Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nicotine Tob Res ; 25(6): 1194-1197, 2023 05 22.
Article in English | MEDLINE | ID: covidwho-2283862

ABSTRACT

INTRODUCTION: Mixed findings have been reported about the impact of the COVID-19 pandemic on smoking behavior in different populations. AIMS AND METHODS: In this study, we aimed to quantify changes in smoking prevalence through the proxy of nicotine consumption in the Australian population from 2017 to 2020 inclusive. Estimates of nicotine consumption between 2017 and 2020 were retrieved from a national wastewater monitoring program that covers up to 50% of the Australian population. National sales data for nicotine replacement therapy (NRT) products from 2017 to 2020 were also acquired. Linear regression and pairwise comparison were conducted to identify data trends and to test differences between time periods. RESULTS: The average consumption of nicotine in Australia decreased between 2017 and 2019 but increased in 2020. Estimated consumption in the first half of 2020 was significantly higher (~30%) than the previous period. Sales of NRT products increased gradually from 2017 to 2020 although sales in the first half of the year were consistently lower than in the second half. CONCLUSION: Total nicotine consumption increased in Australia during the early stage of the pandemic in 2020. Increased nicotine consumption may be due to people managing higher stress levels, such as from loneliness due to control measures, and also greater opportunities to smoke/vape while working from home and during lockdowns in the early stage of the pandemic. IMPLICATIONS: Tobacco and nicotine consumption have been decreasing in Australia but the COVID-19 pandemic may have temporarily disrupted this trend. In 2020, the higher impacts of lockdowns and working from home arrangements may have led to a temporary reversal of the previous downward trend in smoking during the early stage of the pandemic.


Subject(s)
COVID-19 , Smoking Cessation , Humans , Nicotine , Pandemics , Australia/epidemiology , Smoking Prevention , Tobacco Use Cessation Devices , COVID-19/epidemiology , Communicable Disease Control
2.
J Hazard Mater ; 432: 128667, 2022 06 15.
Article in English | MEDLINE | ID: covidwho-1788119

ABSTRACT

Wastewater-based epidemiology (WBE) approach for COVID-19 surveillance is largely based on the assumption of SARS-CoV-2 RNA shedding into sewers by infected individuals. Recent studies found that SARS-CoV-2 RNA concentration in wastewater (CRNA) could not be accounted by the fecal shedding alone. This study aimed to determine potential major shedding sources based on literature data of CRNA, along with the COVID-19 prevalence in the catchment area through a systematic literature review. Theoretical CRNA under a certain prevalence was estimated using Monte Carlo simulations, with eight scenarios accommodating feces alone, and both feces and sputum as shedding sources. With feces alone, none of the WBE data was in the confidence interval of theoretical CRNA estimated with the mean feces shedding magnitude and probability, and 63% of CRNA in WBE reports were higher than the maximum theoretical concentration. With both sputum and feces, 91% of the WBE data were below the simulated maximum CRNA in wastewater. The inclusion of sputum as a major shedding source led to more comparable theoretical CRNA to the literature WBE data. Sputum discharging behavior of patients also resulted in great fluctuations of CRNA under a certain prevalence. Thus, sputum is a potential critical shedding source for COVID-19 WBE surveillance.


Subject(s)
COVID-19 , Wastewater-Based Epidemiological Monitoring , COVID-19/epidemiology , Humans , RNA, Viral , SARS-CoV-2 , Wastewater
4.
Sci Total Environ ; 806(Pt 2): 150572, 2022 Feb 01.
Article in English | MEDLINE | ID: covidwho-1433810

ABSTRACT

Current studies have confirmed the feasibility of SARS-CoV-2 RNA detection by RT-qPCR assays in wastewater samples as an effective surveillance tool of COVID-19 prevalence in a community. Analytical performance of various RT-qPCR assays has been compared against wastewater samples based on the positive ratio. However, there is no systematic comparison work has been conducted for both analytical sensitivity and quantitative reliability against wastewater, which are essential factors for WBE. In this study, the detection performance of four RT-qPCR primer-probe sets, including CCDC-N, CDC-N1, N-Sarbeco, and E-Sarbeco, was systematically evaluated with pure synthetized plasmids, spiked wastewater mocks and raw wastewater samples. In addition to confirm RT-qPCR results, Nanopore sequencing was employed to delineate at molecular level for the analytical sensitivity and reproducibility of those primer-probe sets. CCDC-N showed high sensitivity and the broadest linearity range for wastewater samples. It was thus recommended to be the most efficient tool in the quantitative analysis of SARS-CoV-2 in wastewater. CDC-N1 had the highest sensitivity for real wastewater and thus would be suitable for the screening of wastewater for the presence of SARS-CoV-2. When applying the primer-probe sets to wastewater samples collected from different Australian catchments, increased active clinical cases were observed with the augment of SARS-CoV-2 RNA quantified by RT-qPCR in wastewater in low prevalence communities.


Subject(s)
COVID-19 , SARS-CoV-2 , Australia , Humans , RNA, Viral , Reproducibility of Results , Wastewater
5.
Sci Total Environ ; 761: 144216, 2021 Mar 20.
Article in English | MEDLINE | ID: covidwho-997517

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus which causes coronavirus disease (COVID-19), has spread rapidly across the globe infecting millions of people and causing significant health and economic impacts. Authorities are exploring complimentary approaches to monitor this infectious disease at the community level. Wastewater-based epidemiology (WBE) approaches to detect SARS-CoV-2 RNA in municipal wastewater are being implemented worldwide as an environmental surveillance approach to inform health authority decision-making. Owing to the extended excretion of SARS-CoV-2 RNA in stool, WBE can surveil large populated areas with a longer detection window providing unique information on the presence of pre-symptomatic and asymptomatic cases that are unlikely to be screened by clinical testing. Herein, we analysed SARS-CoV-2 RNA in 24-h composite wastewater samples (n = 63) from three wastewater treatment plants (WWTPs) in Brisbane, Queensland, Australia from 24th of February to 1st of May 2020. A total of 21 samples were positive for SARS-CoV-2, ranging from 135 to 11,992 gene copies (GC)/100 mL of wastewater. Detections were made in a Southern Brisbane WWTP in late February 2020, up to three weeks before the first clininal case was reported there. Wastewater samples were generally positive during the period with highest caseload data. The positive SARS-CoV-2 RNA detection in wastewater while there were limited clinical reported cases demonstrates the potential of WBE as an early warning system to identify hotspots and target localised public health responses, such as increased individual testing and the provision of health warnings.


Subject(s)
COVID-19 , Coronavirus , Australia , Humans , Queensland , RNA , SARS-CoV-2 , Wastewater
6.
Sci Total Environ ; 728: 138764, 2020 Aug 01.
Article in English | MEDLINE | ID: covidwho-618510

ABSTRACT

Infection with SARS-CoV-2, the etiologic agent of the ongoing COVID-19 pandemic, is accompanied by the shedding of the virus in stool. Therefore, the quantification of SARS-CoV-2 in wastewater affords the ability to monitor the prevalence of infections among the population via wastewater-based epidemiology (WBE). In the current work, SARS-CoV-2 RNA was concentrated from wastewater in a catchment in Australia and viral RNA copies were enumerated using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) resulting in two positive detections within a six day period from the same wastewater treatment plant (WWTP). The estimated viral RNA copy numbers observed in the wastewater were then used to estimate the number of infected individuals in the catchment via Monte Carlo simulation. Given the uncertainty and variation in the input parameters, the model estimated a median range of 171 to 1,090 infected persons in the catchment, which is in reasonable agreement with clinical observations. This work highlights the viability of WBE for monitoring infectious diseases, such as COVID-19, in communities. The work also draws attention to the need for further methodological and molecular assay validation for enveloped viruses in wastewater.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Wastewater/virology , COVID-19 , Epidemiological Monitoring , Humans , Monte Carlo Method , Pandemics , Queensland/epidemiology , RNA, Viral/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL